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Abstract

A new method for the acceleration of linear and nonlinear time dependent calculations is

presented. It is based on the Large Discretization Step (LDS, in short) approximation, defined

in this work, which employs an extended system of low accuracy schemes to approximate a

high accuracy discrete approximation to a time dependent differential operator. Error bounds

on such approximations are derived. These approximations are efficiently implemented in

the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these

algorithms the high and low accuracy schemes are interpreted as the same discretization of a

time dependent operator on fine and coarse grids, respectively. Thus, a system of correction

terms and corresponding equations are derived and solved on the coarse grid to yield the fine

grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid

time steps. The resulting methods are very general, simple to implement and may be used to

accelerate many existing time marching schemes.

The efficiency of the LDS algorithms is defined as the cost of the computing the fine grid

solution relative to the cost of obtaining the same accuracy with the LDS methods. The LDS

methods typical efficiency is 16 for 2D problems and 28 for 3D problems for both linear and

nonlinear equations. For a particularly good discretization of a linear equation an efficiency
of 25 in 2D and 66 in 3D was obtained.
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1 Introduction

In recent years, interest in long-time integration of partial differential equations has increased

greatly due to the need to solve diverse problems occurring in various fieids of science and engi-

neering such as fluid mechanics, aeroacoustics, electromagnetism and others. In such computations

a large system of equations has to be evaluated (explicit schemes) or solved (implicit schemes)

for many time steps. These simulations require huge computation time and unless more effi-

cient computational methods are developed, they will be practically intractable in the foreseeable
future.

The two possible approaches to employ finite difference approximations to such problems

are either to use a highly accurate scheme (i.e., a high order scheme or a scheme for long-time

integration [10, 13]) on a grid which resolves all the physical frequencies occurring in the problem,

or to use a low order scheme on a significantly finer grid, or a combination of these two. The

first approach seems more appealing theoretically. Indeed, high order spatial discretizations [6,

7, 13] and discretizations for long-time integration [10, 13], as well as high order time marching

schemes [8] have been in the focus of research lately. Although significant progress has been made,

the two main problems investigated in the abovementioned research still lack general solutions.

The appropriate treatment of the boundary terms in high order Runge-Kutta schemes that will

maintain the interior discretization accuracy still requires further investigation even for linear

variable coefficient equations. This problem is mainly of a theoretical interest as it has only a

minor effect on most practical computations [8]. The second problem is the lack of a systematic

method for constructing numerical boundary conditions of a required accuracy such that the

resulting discretization is time-stable. This is a major obstacle to long-time simulations. The

Large Discretization Step (LDS) methods, presented here, offer a new and interesting approach

to long-time integration. They enable to obtain a fine grid accuracy by time stepping mainly

on a coarse grid with rare visits to the fine grid, at a cost substantially smaller than fine grid
simulation.

In some cases, the huge computational cost of fine grid simulations may be reduced by using

such a grid only at regions where it is required, e.g., to resolve shocks, and employing coarser grids

in parts of the computational domain where the solution is relatively smooth [1, 2, 3]. This method

of local mesh refinement for systems of conservation laws has been reported to achieve a speedup

of up to a factor of 55 for three dimensional problems, relative to performing the computation

on a uniform grid with the finest mesh employed [1]. This approach assumes the scheme has

the same spatial and temporal accuracy and does not seem applicable to implicit schemes. The

programming effort involved in generating and moving the fine grid patches is probably the cause
for the limited use of this method.

Multigrid methods have been employed to accelerate time dependent computations in several

ways. The naive approach is to use an efficient multigrid solver for implicit time marching schemes.

However, in this approach one is still confined to the fine grid time step. A more advanced idea

is to use multigrid in time, as well. This approach, the frozen r method, was successfully applied

to parabolic equations [4, 5, 9]. There, correction terms are added to the coarse grid equations

such that one can time-step on the coarse grid and practically obtain the fine grid solution. This

method exploits the smoothness of the change in the solution, typical to parabolic equations,

which can be well approximated on coarser grids.



TheLargeDiscretizationStep(LDS)methods,first introducedby the authorsin [11],maybe
viewedasageneralizationof thefrozenr method aimed at accelerating the solution of hyperbolic

as well as parabolic equations, for both implicit and explicit time marching schemes. The present

work investigates the LDS approach for hyperbolic equations; a class of equations that was not

previously amenable to multigrid methods. Although the error bounds derived in this work apply

to any time dependent equation, the algorithm for parabolic equations would significantly differ

from the hyperbolic solver. Nevertheless, it is expected that introducing the ideas outlined in this

work to parabolic solvers will substantially improve their performances, as well.

The present paper extends the preliminary results presented in [11] in several important as-

pects. The algorithm for high degree LDS was significantly improved; resulting in a more efficient

algorithm that requires lower order intergrid transfers. The method was extended to treat non-

linear problems with the same efficiency. Last, problems with non-periodic boundary conditions

were solved.

The hyperbolic LDS identifies two grids, a coarse representation grid on which all wavelengths

occurring in the physical problem can be well resolved, and a finer computational grid which is

required to obtain the desired accuracy with the given discretization at the prescribed final time.

The LDS method employs a grid possibly finer than the representation grid, yet significantly

coarser than the computational grid. It introduces one or more correction terms to the coarse

grid equations and a system of equations satisfied by these terms is derived, initialized using

the fine grid and solved on the coarse grid to yield the fine grid solution. The correction terms

are integrated on the coarse grid, hence, their accuracy deteriorates at a rate determined by the

coarse grid discretization. However, since their norm is significantly smaller than the solution

norm, they can be effectively used for many coarse grid time steps. Thereafter, the fine grid

should be revisited to compute new initial data for the correction equations.

The LDS method assumes that a grid which resolves all the physical frequencies occurring

in the problem as well as a discretization suitable for a fairly long simulation time are given.

However, the requirement to employ the same discretization for substantially longer integration

time while maintaining a desired accuracy necessitates the use of significantly finer grids. The

algorithm solves on the coarse grid an extended system of equations, using essentially the original

time marching subroutines (with at most slight modifications), yielding the fine grid solution. This

programming simplicity renders the proposed method easily applicable to any problem similar to

these investigated in this work, provided it obeys a few programming conventions. This is an

important feature of the proposed method.

The efficiency of the LDS is defined as the cost of computing the solution on the fine grid

relative to the cost of obtaining the same solution with the LDS on the coarse grid. The typical

efficiency achieved in this work was 16 for 2D problems and 28 for 3D problems. This efficiency

was obtained for linear problems with periodic and Dirichlet boundary conditions and for the

nonlinear Euler equation in a periodic domain. A particularly good discretization yielded, for a

linear problem, an efficiency of 25 in 2D and 66 in 3D.

The organization of this paper is as follows. Section 2 contains a heuristic derivation of the

method for both linear and nonlinear time dependent equations. Section 3 presents bounds on

the error in the LDS approximation for linear equations. In Section 4 it is shown that the LDS

approximation maintains the stability and consistency of the original scheme. The LDS algorithms

are described in Section 5. In Section 6 Fourier analysis is employed to analyze various aspects of

the algorithm, in particular, to obtain the necessary orders of the intergrid transfers. Section 6



presentsnumericalresultsandthe conclusionsaregivenin Section7.

2 Heuristic Derivation

An intuitive and informal derivation of the LDS method will be outlined in this section. A rigorous

derivation for linear problems is given in Section 3.

Consider a linear time dependent system of equations with coefficients possibly dependent on

x but not on t,

ut = L(x,-_x)u for x E _t

Mu = 0 forxE0gt

u(x,O) = uo(z) for x e

t e [0,T]

(2.1)

(2.6)

If the following relation holds, which is reasonable to assume when L H well approximates L h,

(Or - Ltt)2u h << (0t - Lg)u h (2.7)

i.e., 71 << r, then Vl may be neglected; otherwise, the same argument implies that 71 satisfies a

similar equation to u h, resulting in a larger system of correcting equations (See Section 3). Thus,

when relation (2.7) holds and r is properly initialized the system of equations

u_t = LHu h + 7 (2.8)

rt = LHr

(u h- uH)t ----LH(u h- U H) + r

Thus, this error satisfies the same equation as u h. Moreover,

(Or - LH)r -= (Or - LH)2u h -- Vl

where _ C _d, and o--%= ( 0 a _)
0X 1 ' 03:2 _ • • • , 0X d "

Let L h, L g be the same semi-discretization of equation (2.1) on grids h and H, respectively.

Assume that the fine grid is required to obtained the desired accuracy at time T. However, instead

of solving on the fine grid

= LhUh (2.2)

one would like to modify the coarse grid equation such that it will yield the fine grid solution.

The coarse grid solution satisfies,

= L'U" (2.3)

A correction term v to equation (2.3) is sought such that,

u h = LHu h + r (2.4)

where u h = IHu h denotes a restriction of the fine grid solution to the coarse grid. The relative

error, u h - U H, satisfies

(2.5)



yields the fine grid solution on the coarse grid for some integration time. This method of ex-

panding a system of difference equations to obtain a more accurate approximation will be called

an .LDS approximation. In particular, an inflated system of the type (2.8) will be called an LDS

approximation in Correction Scheme form.

Introducing the new variable v h = u h + r, the system (2.8) can be written as,

uht = LHu h + vh- u h (2.9)

V h --_ LHv h _ v h _ u h

This later form might look awkward; however, as will be shown next, this is the form of the LDS

for nonlinear problems. This representation of the LDS will be called Full Approximation Scheme,

following the multigrid naming conventions [4].

In Section 3 rigorous error bounds on such approximations for linear evolution equations are

derived.

For nonlinear problems, only a heuristic derivation is given. Consider the nonlinear evolution

problem,

ut = P( x, u, __O_-_-r.) for x E
fi

M(u) = 0 forxE0ft

u(x,O) = Uo(X) forx e_t

t • [0,T]

(2.10)

where _ C _d, and 0-07= ( o o o.o_)Oxl ' Ox2 ' " " " ' Oxd "

Let ph, pH be the same semi-discretization of equation (2.10) on grids h and H, respectively.

A modification of the coarse grid equation is sought that will yield on that grid the fine grid

solution, i.e., a forcing term is required which will satisfy

uht = pH(uh)+ r (2.11)

where u h = IHu h denotes a restriction of the fine grid solution to the coarse grid. In this case

the relative error satisfies,

(u h - uH)_ = pH(uh)-- pH(uH) + r (2.12)

Py(uh)(u_- uH)+

where P_(u h) is a linearization of pH around u h. Assume that the following relation holds, which

is reasonable if pH well approximates ph

(ot- p_'(u_))T= (o_- Py(uh))_(uh-u H) <<(0,- Py(_h)) (uh-U H)

then the right hand side of the r equation may be neglected.

It follows, by the same argument as in the linear case, that the system

(2.13)

uh = pH(uh)+T (2.14)
,_ = P_'(u_),

yields on the coarse grid the fine grid solution, for some integration time.
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This formulationof the LDS is inconvenient to use as it requires explicit linearization. Intro-

ducing the new variable v h = u h + r results in the following system of equations,

u_ = PH(uh) + vh- uh (21_)
vht = pH(vh) + v h - u h

In this setting, the implementation of the nonlinear LDS necessitates only minor modifications to

the original time marching program.

3 Approximation Theorems

The LDS approximation introduced in Section 2 may be better appreciated once the initial con-

ditions for the correction equations are determined, and error bounds on these approximations

are derived. These two issues are the subject of the present section.

First, an error bound is obtained for a semi-discrete approximation in a restricted setting. This

restriction, a commutativity assumption, is introduced merely to maintain a simple and intuitive

presentation. Subsequently, error bounds for semi-discrete and fully discrete approximations are
derived without this superfluous assumption.

The analysis will be performed for linear equations with coefficients which may depend on x
but not on t, of the form,

0
_ = _(x, _) u + r(x)

Mu=O

u(x, o) = uo(z)

where _ C 2_ d, and o = (o 0 0__o_)
0X 1 ' O_X2 ' - . . , O_Xd •

forxE_

for x E 0n

for x E f_

t • [0,T]

(3.1)

3.1 Semi-Discrete Analysis

3.1.1 Motivation

Consider a stable semi-discretization of a linear homogeneous initial boundary value problem of

the form (3.1) given by,
du h
-- - Lhu h = 0 (3.2)
dt

with initial conditions uh(0) = u0h.

Let L h be an approximation to L h, e.g., a coarse grid representation of the fine grid operator.
Define the system

d V h -- yh
rn-l,rn "'" 0

m--l,m

Lh h 0
"Urn,m Vm,r n

with initial data

(3.3)

(3.4)



Henceforth, an approximation of a system of equations by an enlarged system of the form (3.3)

will be called an LDS approximation of degree m.
Assume that L h and L h commute. The solution of this system of linear ordinary differential

equations is ca% (Vo,m(0),...,h Vh,m(O)) T, where _4h denotes the above system. The matrix A h has

a block Jordan form; hence, an explicit expression for VhO,m(t) is given by,

-- rh_ktk ( )Vh'm(t) -= eLht_(Lhk=o k_" ] _h(o):eLht e(Lh--Lh)t -- (Lh-Lh)rn+l_m+l'(-m-+T_)T"uh(O)

for some ( E [0, t].

Assume that IleLhtuh(O)ll <_ Che_h*Nuh(O)l I, for constants ch,13h; then

limb(t)- v°h,m(t)ll= II(Lh- Lh)m+l(m+_m+ll)!eL%h(0)ll< IILh-(mLhl]m+ltm+_+1)! C%_h*lluh(0)ll (3.5)

The bound (3.5)implies that for any fixed final time T, limm_ Iluh(T)- vho,m(T)ll = 0, with

convergence rate depending on the magnitude of the relative truncation error, IlLh - L hII.
This bound also suggests that when the relative truncation error is small, then there exists a

time To such that the error in the approximation of a fixed degree m is small for T < To. This

observation motivated the LDS algorithm and enables its high efficiency. In this algorithm L h

and L h stand for the same discretization on the fine and coarse grids, respectively. The algorithm

computes initial conditions for the correction equations using the fine grid, then marches with the

enlarged system on the coarse grid as long as the LDS error relative to the fine grid solution is of

the same magnitude as the error in the later solution. Then, the fine grid is revisited to compute

new initial data for these equations. In this manner the fine grid accuracy can be obtained when

time marching mainly on the coarse grid.

The identity in (3.5) can be used to obtain the following inequality,

Huh(t)-- vho,m(t)[[< ueLht[[[[(Lh- Lh)m+luh(O)[Itm+l
- (m + 1)!

(3.6)

The stability of the semi-discretizations considered implies that there exists a mesh size h0 and

constants C,/J such that for all grids with mesh size h <_ h0,

IleLh*uh(O)ll < C eZtlluh(O)ll (3.7)

Therefore, for h _< ho the inequality (3.6) implies that,

Iluh(t)- vhm(t)ll < I1(Lh -- Lh)m+lUh(O)lltm+lCeZ,
-- (m+ i)!

(3.8)

Hence, for a fixed degree m and fixed integration time T, the error in the LDS approximation

satisfies, Iluh(t) -- vh, m(t)ll = O(h(m+l)P), provided (L h - _h) = O(hP). Furthermore, if p > 0,

which is reasonable to assume, this bound suggests that the LDS error decreases as h (m+l)p as

mesh is refined.

In the next section, an error bound is proved for non homogeneous equations without the

commutativity assumption

6



3.1.2 Error Bound

Let L h be a discretization of the spatial operator L in (3.1). Let A h be an approximation to L h,

and denote B h = L h - A h. Intuitively, L h may be viewed as a fine grid discretization and A h

a coarse grid approximation to L h. However, it should be noted that all the operators L h, A h, B h

are defined on the same grid. The semi-discretization of equation (3.1) may be written as

uht -- Ahu h = Bhu h -4- fh

uh(O) = uho (3.9)

Denote the solution of this problem by uh(t) E R N ,where N is the number of grid points.
Assume the following inequalities hold,

II_A_'II-< _' (3.10)

IIUh(OII _< C_"' (ll,.,ohll+II.t'hll) (3.11)

for constants C,3 which may depend on h. The stability of the semi-discretizations considered

implies that for fine enough grids (3.10)-(3.11) may be bounded independently of h.
Define the system of equations

iv.)(ah,0l/ m0,m • • • ,

d " 0 A h I ... •
d-t h" --

yam_l,rn " • h• Yma l,rn

v_,_ A_ v_,_
/ ) (3.12)

,m(0) = h hBm-1 U_

at'_m ¢" 0

(3.13)

f_ = B_fh

with the B h defined inductively by

0 _< j _< m (3.14)

Boh = l
Bhj+l = [Bh, Ah] + BhBh J _> 0 (3.15)

It will be shown that the first component of the solution of this system, Voh,m(t), approximates

Uh(t). More precisely, a bound on IIVoh,m(t)- uh(t)[I will be presented which, for fixed t, tends to
zero as m ---, oc.

The vector (BhoUh(t),...,B h uh(t)) satisfies the equation

/(ah,o ( ,oh/d " 0 A h I : .

d-_ Bm_lh U h - ... Bh Uh = fh_l (3.16)

l_h u h



( o"hO)lhh) o"oBhm_[Uh(O) = Bm_lUgh"h (3.17)

BmU_B_uh(o) h h

It will be shown that vjh,m(t)converges to BhUh(t)as m --+ oc. In particular, Voh,m(t)converges

to Uh(t) as m -- _.

Define eh,m(t) = Bhuh(t)- V "h3,re(t). It satisfies the following equation

d_ h " • h 0
em_l,m ". era_l, m

Bm+leh,m A h eh,m h U h

(e0m0)l0ehm llm(0): 0

e_,m(0) 0

The solution of this system satisfies

t h

e_,m(t) = f A (t-s)--h
JOe Dm+lUh(_)d8

(3.19)

(3.20)

eh, m(t) = /ot eAh(t-s)ehTl,m(s)d8

The norm Ileohm(t)llis the sought error bound.

0_j_m-1 (3.21)

]o' " (lluo II:"ll)ct:'Ileh,_(t)ll _< Ilnhm+lll e_(t-')llVh(s)lld_ <_ IIBm+,ll II+

By induction one obtains

(3.22)

Ile_,m(t)ll <-- IIBmTlllh (llUhOII Jr- Ilfhll) C

tm-l+l

(m- l+ 1)!:t (3.23)

The following theorem was proved.

Theorem 1 Let uh(t) be the solution of (3.9) and (V_(t),..., V_,m(t)) be that of (3.12)-

(3.13)' Then

tm+l

Ilrohm(t)- gh(t)ll < liBra+ill (lluohll+ Ilfhll) C (_7 1)! e_' (3.24)



A differentboundon the errorin the LDS approximation will be derived next. Denote

• h(t) = sup e_' (3.2,5)
0<s<t

sup h= IIBm+lUh(s)ll (3.26)
0<s<t

The exponent _ may depend on the mesh size h. However, for a grid fine enough the stability of

the semi-discretization implies that the solution can be bounded independently of h. Therefore,

it will be assumed that the grid is fine enough for this property to hold. Then,

Ile ,m(t)ll < qth(t)O_+l(t)t (3.27)

and

Therefore,

He_,m(t)[] < [qZh(t)] m-j+1 q)hm+l(t ) (m tin-j+1- - j + 1)!
(3.28)

[leoh,m(t)U < [_lh(t)] rn+l _h (,'_ !m +1- (3.29)
- Xm+l_)(m + 1)!

This bound is very crude and can be easily improved. However, it implies that for a fixed final

time T and degree m, if Bm+l = O(h vm+l) with Pm+l > 0, then ¢h+l(T ) = O(hVm+ _) and the
error in the LDS approximation decreases like hPm+_ as mesh is refined.

h
The bound (3.29), suggests that looking at Bin+ 1 may give an insight into the accuracy of the

approximation. From the definition of B h, it follows that B h = B h and B h = [B h, A h] + (B h)2.

In the following two examples, A h is interpreted as a coarse grid approximation to the fine
grid spatial discretization A h + B h.

Example 1 Consider a discretization of the two dimensional wave equation

utt = Au (3.30)

when transformed into the system

(0v t = A 0 v (3.31)

This discretization of the wave equation was successfully used in [12] to solve problems in elasticity.

Assume that the Laplace operator is approximated by a second order scheme. Then, up to higher
order terms,

0 i) 0= 0 ' 0

where a denotes a generic constant. Since B 2 = 0, it follows that

Bh = [Bh'Ah] = ( -a(h2 - H2)(Ozzzz + Oyyy_)O c_(h2 - H2)(Oxzzx + i)uy_Y) )o (3.33)

It can be seen that B h consists the same terms as the relative truncation error. Thus, one can not

expect that the LDS of degree one will yield an approximation more accurate than the coarse grid
discretization. Indeed, applying the LDS algorithm to this discretization shows that the error in

the LDS of degree one solution grows like the coarse grid error.



Example 2 Consider the linearized Euler equation

pt = a.V+c(u_:+vy)

ut = a. V + c p_:

vt = a. V + c py

(3.34)

where a = (al, a2) is a two dimensional vector. Assume, that the spatial operator is discretized

using a second order scheme. Then, up to higher order terms,

A h -
a. (V +aH 2(Ozzx + Oy_y))

c(Ox + a H2 0:_::::)

c (Oy + a H 20yyy )

c(O_+ ,_H2Ox_)
a.(V +v_H2(cO::xx +Oyyy))

0

c (0y + c_ H 2 0y_y)
0 )a.(v + ,_Y _(O_x_+ 0_ ))

c a Oxxx a . (a O:_:_x+ a Oyyy) 0 (3.35)

c a Oyyy 0 a . (a Ozxx + a i)_yy)
B h = (h 2 - H 2)

where a is a generic constant. It can be easily seen that (Bh) _ consists of sixth order mixed

derivatives and fourth order powers of H, h.

(°°i)[B h, A h] = 0 0

0 -77

(3.36)

with

= c2 a 2 (h 2 - H2)2(Oyyyx - Ozyy_ + O_yyxxx - Oxxx_yy) (3.37)

For smooth solutions,

= c2 a 2 (h 2 - H2)2(cOyyy:_ - c9_:yy_) (3.38)

Hence, the error bound (3.29) implies that for smooth data the LDS of degree one yields

a significantly smaller error than the coarse grid operator. Indeed, our numerical results (see

Section 7) show that the LDS algorithm for this equation yields the fine grid solution on the

coarse grid.

3.2 Fully Discrete Analysis

Consider a stable finite difference approximation to (3.1) of the form

where k = At.

Assume that

U TM = (I + kA)U n + kBU n + kf
V 0 : UO

(3.39)

IIUnil < e_k(lluoll+ Ilfll) (3.40)

JlI+ kAH <_ ezk (3.41)
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In ananalogouswayto the semi-discretecase,define(V0n,m,..., V_,m) to be the solution of

(vn l/(•o,m I + kA kI 0 ...
• 0 I+kA kI ...

vn+l •.
"m-l,m

V '_+1 I + kA
• re,rig

//k o/omVmn_l,m k fro-1

_ kfm

(3.42)

O,m

V. o
m--l,m

0
V_,m

B°u°" IBin- 1 uo

Bm Uo

(3.43)

fj = Bjf O <_j <_ m

with Bj defined recursively by

B0 = I

Bj+I = [Bj,A]+BjB j>_O

Consider the vector (BoU'_,...,Bm_IU n, BraUn). It satisfies

(3.44)

(3.45)

(3.46)

Bin-1U n+l "'. Bin-1U n k frn-1

BmU n+l I + kA BmUn k fro + kBm+lU n)

with the same initial condition as (Volta,..., V_,m).

The error ej_m = Bj U '_ - V.'_ satisfies3,m

_0_ ,oka k, o enO,m 0
• I+kA

en+l - = (3.48)
m-l,m "'" en-l,m 0

d '+1 I + kA n k Bm+lU n-m,m em,m

(3.47)

t%°m//o)eOmxmmmo O0 (3.49)
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Theseequationsgive,

le_n,m
n-1

= E(I+kA)n-l-JkBm+lUJ (3.50)
j=o
n-1

e'_ V'( + kA) '_-l-j k e3 0 < l < ra - 1 (3.51)t,m = _,I 1+1,_
j=0

The following theorem can be proved by bounding the solution of this discrete system.

Theorem 2 Let U n be the solution of (3.39) and (Vo,m(t),..., V,,_,m(t)) be that of (3.42)-

(3.43). Then

V_ n ([[U0[, + (n)km+leB(n_m_l) k (3.52)II 0,m- g_ll -< Ilfll) liBra+ill m + 1

Proof : The following, more general, formula will be proved

((n)km-t+1e_(n-m+'-1)kforO<l<m(3.53)Ile?,mll-< IIU°ll+ Ilfll)lIB-+ill m - l + 1

Theorem 2 is the particular case of l = 0.

The proof follows by induction on rn - 1. First consider the case m - l = 0, i.e., l = m.

According to formula (3.50)

Therefore,

Ile_,mil

n-1

e_n,,." = y'_(I + kA) '_-l-j k Bm+,U j (3.54)
j=0

n-1 n--1

< _ II(/+ kA)n-l-Jll k liBra+ill IIUJll <_ _ eZ(_-_-J)k k lIB,+ill e_jk (llU°tl + Ilfll)
j=0 j=0

= (llV°ll + Ilfll) IIBm÷_ll('_k)e_(_-m (3.55)

Assume the bound (3.53) is correct for m - l = m - 1; that is,

He_,ratl __ ("U°I'-['- 'lfl') ,lUre÷Ill(:) kmel_(n-m) k

From relation (3.53) it follows that,

n--1

e n kA) '_-l-j k ej0,m = E( 1+ 1,m
j=0

Therefore, by the induction hypothesis (3.56),

(:)Ile_,mll --- Y'_II(I+kAF-I-Jll k (llU°ll+llfll) llBm+lll kr_
j=0

( n ) km+le_(n-m-1)k- (llU°ll + Ilfll)IIBm+_ll m + 1

(3.56)

(3.57)

eZ(j-m) k (3.58)

(3.59)
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Thelast inequalityfollowsfrom thefollowingidentity whichcanbeprovedby inductionon n.

j=O

(3.60)

The relations (3.50)-(3.51) give rise to a somewhat different bound, as well. Denote,

• h(n) = sup ]l(I+ kA)Jll (3.61)
o j<,_

¢_+1(n) = sup [IB_+IUJll (3.62)
O<_j<_n

Then,

Ile ,mll (3.63)
and

[le_,ml[ < (nk) m+l [k_h(n)] m+' 0_m+l(n) (3.64)

The stability of the discretization implies that for a fixed time T, if the meshsize is fine enough,

i.e., h _< h0, (assuming that k is related to h in a fixed manner), then one can bound

q2h(n) < C(T) for all nk <_ T, such that h _< h0 (3.65)

this bound is independent of the mesh size. Thus,

Ile ,mll Tm+l [C(T)] m+l _2hrn+l(n) (3.66)

If Bm+l = O(hP,_+l), then as mesh is refined the error in the LDS approximation decreases like
hPm+J .

At first glance the discretization (3.39) is a first order in time explicit scheme. However, any

single stage explicit or implicit discretization of any order can be brought to a similar form once the

source term is appropriately redefined. Therefore, Theorem 2 can be modified and generalized

to yield a similar result for a general discretization. Such a generalization would be futile as

finding an explicit form for A, B and Bm might require matrix inversion or computing a matrix

polynomial. Thus, in those cases the bound (3.52) is hard to compute.

In the fully discrete setting, as in the semi-discrete, an inspection of Bm+l might indicate

about the applicability of the LDS method for a given discretization.

4 Stability, consistency and convergence

In the previous section a method for obtaining highly accurate approximations using an expanded

system of lower order approximations was analyzed. It should be proved that if the original scheme

was consistent and stable then so is the resulting LDS scheme.

For simplicity of presentation the discussion is limited to LDS of degree one. The generalization

to LDS of general degree m is straightforward. It is further assumed that the source term F = 0.

This assumption does not effect stability analysis [14] and its effect on consistency will be shortly
discussed.

13



In an LDSof degreeoneinsteadof usingthe stableandconsistentscheme,

V '_+1 = (I+ kA)U '_ (4.1)

U ° = u0 (4.2)

the following LDS system is employed,

PO_l+1 = (I + kA)Yon,1 + kVlnl (4.3)

V,_,+' = (I + kA)Vl; , (4.4)

V0°,l = u0 (4.5)

V_I = Bluo (4.6)

where B1 = B is defined in (3.39).

The stability of the scheme (4.3)-(4.4) follows from the structure of this system. It consists of

a principal part which is coupled through lower order terms. The principal part is diagonal; thus,
its discretization is stable for the same time step as the original scheme. The lower order term

does not affect stability.

The consistency of the single equation discretization implies that the LDS is a consistent

approximation of the system

ut = Lu + r (4.7)

rt = Lr

for initial data

u(z,0) = u0(x)
T(x,0) = To(x)

In the LDS approximation VI°,I : BlUo • Thus, if the following relation holds

B1 = O(h m + k ql ) with Pl,ql >- 1

then the LDS solution is a consistent approximation of (4.7)-(4.8) with initial data

u(x,0) = u0(x)
r(z, O) = 0

(4.s)

(4.9)

(4.10)

Thus, it consistently approximates the equation

us = Lu (4.11)

= uo(x)

The source term for the V1,1 equation is B1 F. Thus, by the above reasoning, if (4.9) holds then

the r equation is a consistent approximation of an equation with F = 0. Therefore, this term
does not effect consistency, either.

It follows, by Lax equivalence theorem [14], that the consistency and stability of the origi-

nal equation together with condition (4.9) ensure the LDS solution convergence to the analytic

solution.
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The LDS approximation maintains the stability of the original scheme, however, it does not

necessarily preserve the time-stability of the discretization, i.e., the LDS solution might exhibit a

non-physical growth in time although the underlying discretization did not allow such a growth.

This phenomena is demonstrated in Lemma 1. Recall, if A h is a discrete operator acting on

grid functions on a periodic or infinite domain, then the symbol o] A h, _h(o), is defined by the

identity,

fih(O)e _e'x = Abe _e'x (4.12)

Lemma 1: Let A h be a space discretization of a scalar time-dependent equation with periodic

boundary conditions, such that its symbol satisfies fth(Oo) = O, for 0o _ 0 and J_h(Oo) _ O. Then

the error in the LDS system based on A _ grows polynomially in time for this Fourier component.

The order of the polynomial equals the LDS degree.

Proof: Consider a semi-discrete LDS approximation of degree one based on A h. According

to Section 3.1.1 it has the form,

u h = A hu h+r h (4.13)

-th = A h 7-h

with initial data

uh(x,O) = uho(x) (4.14)
 h(x,O) = BhUho(X)

The solution of this system for the _0 component is,

ith(_o,t) = eAh(°°)t (_oh(Oo)+ tBh(60)ith(O0)) -- (1 +t/}h(80)) _h(t_O) (4.15)

The proof for higher degree LDS is similar.

Note, that the property Ah(_0) = 0 is common to central discretizations of the first derivative

on non-staggered grids, for 00 = _r (see also Sec. 6.3).

It should be emphasized that although the LDS transformation preserves stability, the resulting

algorithm might not be stable. Consider, for instance, a discretization satisfying the condition of

Lemma 1; then the LDS solution for the _0 component will grow exponentially with the number

of visits to the fine grid. Other possible sources for such a growth are large errors introduced

by the intergrid transfer employed by the algorithm which are not damped during the cycle (see

Sec. 5.1.4) or improper use of Richardson extrapolation (see Sec. 5.2). These last remarks can be

understood once the LDS algorithm is presented, in the next section.

5 Large Discretization Step (LDS) Methods

The LDS approximation, introduced in the previous sections, approximates a high accuracy

scheme by an enlarged system of equations of a lower accuracy discretization. In the present

work the two schemes are the same discretization of a differential operator on two different grids.

An LDS algorithm computes the fine grid solution on the coarse grid by solving there an extended

system of equations which are initialized using the fine grid. The LDS system is integrated on

the coarse grid; hence, the accuracy of the correction terms deteriorates at a rate determined by
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that grid discretization.However,sincethe normof thesetermsis significantlysmallerthan the
solutionnorm, they canbeeffectivelyusedfor manycoarsegrid time steps.Then, the finegrid
hasto berevisitedto computenewinitial datafor thecorrectionterms.Thesetermsinitialization
is computationallycostlyandtheLDSapproximationconsistsof moreequationsthan the original
problem;however,the largenumberof stepsperformedon thecoarsegrid beforerevisitingrenders
the resultingalgorithmveryefficient.

Thissectiondetailsthealgorithmicimplementationof theseideas.Thealgorithmispresented
both in its CorrectionSchemeand Full ApproximationSchemeformsandefficientinitialization
proceduresfor theseschemesaredescribedandanalyzed.Richardsonextrapolationis introduced
to the LDS methodwhich,for smoothsolutions,yieldsa higherorderapproximation.The effi-
ciencyof the algorithmis discussedandevaluated.

Givena systemof hyperbolicdifferentialequationswith coefficientswhichmay dependon x

but not on t, of the form

OU(x,t)
Ot

A(x, -_)U(x,t) = F(x) for x e fi,

Mu(x,t) = 0 forx•0_

U(x,O) = Uo(x) forx•12

t e [0,T]

(5.1)

where _ C £_i_d, and 027 = ( o o a
Consider a discretization of the form

g TM -_ E(x, k, h)U n -_- S(x, k, h)F n (5.2)

where h, k denotes Ax and At, respectively, and U n = U_ approximates U(jh, nk). In this work

E(x, k, h) is an explicit or implicit two level time marching operator. However, the method may

be used with multilevel integration schemes, as well. In the sequel, the notation E k'h will be used,

omitting the possible dependence on x. In an LDS application two grids (in space-time) are given,

a fine one with spacing (h, k) and a coarse with (H, K), where H = ah, K = c_k. Given UH(x, O)

on the (H, K) grid, one needs to calculate the solution up to a prescribed final time T and obtain

the fine grid accuracy.

5.1 The LDS Method of General Degree

The degree of an LDS approximation is defined as the number of its correction terms. The

error bounds obtained in Section 3 suggest that in many cases (e.g., for smooth solutions) the

higher the degree the better the LDS approximates the fine grid solution. In practice, efficiency

considerations limit the degree to at most two (see Section 5.3.2). In the sequel, algorithms for

LDS of general degree are described.

The initialization procedures necessitate the transfer of the solution from the coarse grid to

the fine and back. In this section, it is assumed that appropriate intergrid transfers are given.

The order and properties of these transfers will be discussed in Section 6.1. For presentation

simplicity the algorithm is described for the case F(x) = 0; the treatment of a source term is

straightforward.
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5.1.1 Correction Scheme LDS

The fundamental idea of the LDS method is to look for correction terms to the coarse grid

equations, derive and solve the equations satisfied by these terms to obtaifl the fine grid accuracy

on the coarse grid. In Section 3, it was shown that for linear problems these terms approximately

satisfy the same equation as the solution. The resulting system of equations, which is valid only
for linear problems, was named Correction Scheme LDS.

Correction Scheme LDS of Degree One when H = 2h. For clarity of presentation, the

algorithm is first presented its simplest form, i.e., Correction Scheme LDS of degree one with
H A" 2.
h -- k :

The algorithm consists two stages : initialization of the correction terms using the fine grid,

and time marching on the coarse grid for a predetermined number of steps. The results in Section 3

show that for linear problems the correction terms satisfy approximately the same equation as the

solution. However, they do no indicate how to effectively and efficiently compute initial values for

these terms. The requirement that the LDS solution should yield the fine grid solution suggests
that on the first time steps these solutions should be identical. This observation leads to the

following initialization routine,

Initialize(Vo_,tq_ _)

Set U N rh,k 17N
= _H,K *0,1

Solve uN+_---- E h'k uN+mf _

_,,N+I _-- EH,K Vo No,1

Set V_ N+I = IH'Ku N+I
1,1 h,k --

_N+I
o,1

vN+I _N+I _/:N+I
0,1 ---- 0,1 + 1,1

Set N = N + 1

m=l,2

The initialization consists of interpolating the LDS solution to the fine grid and stepping for

the same time on the fine and coarse grids. Then, the correction term is set to the discrepancy

between the two solutions and the LDS solution is updated to the fine grid. Here, _+1 stands
for an intermediate value assigned to this variable.

The time advance of the LDS has the following simple form,

LDS Method of Degree One, Correction Scheme

Initialize _o
0,1

N=O

While N _ [_] Do

Call Initialize(Vo_,Vl_l)

For i =i .....Revisit Do

Solve _i_+I : E H,K VI_
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v,N+ 1 _-- EH,K V, N V, N+I
0,1 0,1 + 1,1

Set N = N + 1

End

End

The relation between the theory derived in Section 3 and the initialization procedure is ana-

lyzed in Section 5.1.2.

Correction Scheme LDS of General Degree when H = 2 h. The correction term in the

LDS of degree one is initialized to equalize the fine and LDS solutions. If one could solve the

exact equation satisfied by this term, which is approximately the fine grid equation, then the fine

grid and the LDS solutions would be identical. Clearly, this would be as difficult as obtaining

the fine grid solution on the coarse grid. Instead, one can add a new term to correct the first
correction term equation. Thus, in an LDS of general degree, the i th correction term may be

viewed as correcting the (i - 1) th term.

The general degree algorithm consists of two stages : initialization of the correction terms

and time marching on the coarse grid for a predetermined number of steps. The time marching

procedure has the following simple form, where term i corrects term i - 1 for 1 < i < d.

LDS Method of General Degree - d , Correction Scheme

Initialize V,°
0,d

N=O

While IV _< IT] Do

Call Initialize(V0 ,...,V  ,d )
For i = 1,...,Revisit Do

y N+I = EH, KSolve d,d VdN,d

For 1 = d-1 ..... 0, Step = -1, Do

V, N+I = EH, K V, N I/N+I
Solve l,d l,d -]- "l+l,d

End

Set N = N + 1

End

End

In an LDS of degree d, the i th correction term (1 < i < d) corrects the (i- 1) th term and both

satisfy approximately the same equation as the coarse grid solution. Therefore, the initialization

of the i th term to correct the (i - 1) th term is identical to the initialization of the first term to

correct the solution in the LDS of degree one. Once Vi,d is initialized and V/-1,d is updated using

this vMue; the lower index variables can be time advanced using these new values. This procedure

is repeated for all 1 < i _< d. Section 5.1.2 outlines the connection between the error bound
derived in Section 3.1.1 and these intuitive arguments which are implemented in the procedure

listed below.

Initialize(V05,..., VdS,d )
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For i = l,...,d Do

Set U N = I h'k ViNl,d
H,K

Solve uN+_ = E h'k uN+"_ -1 ,

iyN+a = EH:, " vN
" i-l,d i-l,d

Vff+a = IH,KUN+a _,N+I
Set i,d h,k -- i-l,d

v/N+1 _N+l vN+a
-a,d ---- i-a,d Jc i,d

For 1 = i-2 ..... O, Step = -1, Do

_IN+I
Solve V, N+a = EH'K vI,Nd + "l+l,dl,d

End

Set N = N + 1

End

m=1,2

The initialization of an LDS of degree two is graphically illustrated in Figure 1.

h

2h

Figure 1: Initialization of an LDS of degree two. With the notation : u H = Vo,2, r H = Va,2,

_H ._ V2,2
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Correction Scheme LDS of General Degree when H = a h. The above described proce-

dure can be easily adapted for the general case when H = a. The simplest approach is to perform

a time steps on the fine grid for each coarse grid time step and initialize the correction terms

correspondingly, see Figure 2. This procedure of direct initialization is very costly and greatly

h

4h

Figure 2: Direct Initialization

reduces the LDS efficiency.

In case a is a composite number, e.g., a = 2l, a more efficient approach is available, exploit-

ing the LDS high accuracy by employing intermediate grids. In this approach,the simultaneous
initialization, the fine grid is used to initialize an LDS system of degree one on the grid H1 = 2 h;

since this approximation is very accurate it can be used to initialize an LDS of degree one on grid

H2 = 2 H1. This procedure is repeated until the correction term on grid Hi = H is initialized.

This process is repeatedly employed for all correction terms. In this method, a correction term

on a coarse grid is initialized as soon as enough time marching on finer grids was performed, see

Figure 3.

A few important points should be emphasized regarding the initialization procedures. First,

in this work the computationally efficient method was favored. There is, however, a trade off

between the computational cost and the storage requirements of these two methods (see Sec. 5.3).

Therefore, whenever storage is limited, direct initialization might be preferred. Second, it might

have been expected that direct initialization will yield more accurate solutions than the simulta-

neous approach. However, our numerical results show that these methods are indistinguishable

for integrations times of interest, i.e., as long as the error in the LDS solution is small. Last,
the direct initialization is of practical interest, being used with Richardson extrapolation (see

Sec. 5.2).

A simple way to predict the LDS performance is to look at the relative magnitude of the
correction terms immediately after initialization. According to the result presented in Section 2,
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Figure 3: Simultaneous Initialization

the ratio IID(_'°)ll should be roughly constant. Thus, a large variation in this quantity suggestsI1,-_-_(x,o)ll
a large error in the initialization of 7j, causing the LDS failure.

The error bounds derived in Section 3 apply to approximations of general degree m. In practice

however, due to efficiency considerations two is the highest degree used (see Sec. 5.3.2).

5.1.2 Initialization Analysis

The procedure for the correction terms initialization was justified by the intuitive arguments that

when properly initialized, the LDS solution should agree with the fine grid solution for the first

time steps; and that in an approximation of degree d the i th term Vi,d corrects the (i - 1) th

term Vi-l,d (for 1 < i _< d). Thus, each term is initialized similarly to the manner the first

term is set to correct the solution. This section outlines the relation between the error bound

derived in Section 3.1.1 for the semi-discrete case with the commutativity assumption and the way

initialization is implemented. Specifically, it will be shown that the solution at the termination of

the initialization procedure described in Section 5.1.1 and the solution of the LDS approximation

introduced in Section 3.1.1 are equal, up to higher order terms and multiplicative constants which

are used for computational efficiency.

For simplicity, the analysis is performed for the case H = 2. It is assumed that the fine

and coarse grid spatial discretizations commute, i.e., [L H, L h] = 0; and that intergrid transfers

introduce no error. By an abuse of notation these transfers are omitted from the analysis in this

section. Nevertheless, whenever the fine and coarse grid solutions appear in the same formula, it

should be Understood that an appropriate restriction of the fine grid solution to the coarse grid
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is implied. Similarly, whenever the fine and coarse grid operators appear in the same formula

it stands for a restriction of the fine grid operator to the coarse grid. The properties of these

transfers necessary to guarantee the algorithm performance are discussed.in Section 6.1.
In Section 3.1.1 an error bound was derived for a semi-discrete LDS approximation of general

degree d. This approximation which is given by equations (3.3)-(3.4) can be succinctly written

aS,

dvi,d

dt

dVd,d

dt

-- LHvi,d + Vi+l,d

-- LHvd,d

for i _< 0 < d (5.3)

with initial conditions

(5.4)

where uo(x) is evaluated at grid points. The solution of this system is given by,

d-i t k ]Vi,d(x,t) = [k_= o (L h- LH)k+i -_. eL_tuo(x)
for 0 < i < d (5.5)

For an LDS algorithm of degree one denote by uLvs,r the variables approximating v0,1, Vl,1,

respectively. At time At the solution of the LDS approximation is given by,

vo,l(z, At)

Vl,1(x, At) = eL'ht(Lh--LH) uo(x)

(5.6)

For linear problems, the time marching operator E H approximates e LI_At. Therefore, in the fol-

lowing semi-discrete analysis e LHAt will denote the time-stepping on grid H for time At. Assuming

u(x, At) = O(1), then, at the end of the initialization phase the variables ULDs, r satisfy

ULDs(X,At) = eLh_tUo(X)= [l+At(Lh-LH)+ (--_(Lh-LI-I)2]eLna_uo(x)+h.o.t

-- hot
.__ At (Vl,l(z, At)-_O (At (ih - LH)2)} (5.8)

The factor At is maintained to reduce the number of multiplications during the time-stepping

stage. It can be seen that, up to higher order expressions, the algorithm correctly initializes the
first correction term.
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Foran LDSalgorithmof degreetwodenotebyULDS, r, _ the variables approximating v0,2, Vl,2

and v2,2, respectively. At time 2At the solution of the LDS approximation is given by,

v0,2(x, 2At)

Vl,2(z, 2At)

v:,2(z, 2At)

= [1 + 2At (L h- L")] eLn2at (L h- L H) Uo(X) (5.9)

It can be easily seen that at the end of the initialization procedure the variables UL_s, r, _ satisfy,

uL_s(z , 2At)

r(x, 2At) = eLhAt (e LhAt- eLHat) Uo(X)= [e (Lh-LH,2at- e (Lh-LH)at] eLH2atUo(X )

= At{vl,2(x,2At)+O(At(Lh-L"):)} (.5.11)

 (x,2At)

It can be seen the algorithm correctly initializes the correction terms in the LDS of degree two,
up to higher order terms and multiplicative constants.

5.1.3 Full Approximation Scheme LDS

The FAS form of the LDS is appropriate for both linear and nonlinear problems. However, since

the Correction Scheme has a simpler form and necessitates less modifications to the code, it is
more conveniently used for linear problems.

In the present work only LDS in FAS form of degree one was implemented , and it will be
described for a homogeneous system of equations.

Recall, the Full Approximation Scheme of degree one is given by,

uat = pH(uh)+ Vh- u h (5.13)

Vh = pH(vh)+v h- Uh

where pH may be either a linear or nonlinear operator and v h = u h + r, with r corresponding to
the first correction term in the Correction Scheme form.

The algorithmic implementation is slightly more involved than the Correction Scheme as it

requires some modification of the time marching procedure. Denote by /_H,K the integration

scheme obtained by modifying the coarse grid operator E H,K to time advance the LDS system of

degree one (5.13).
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The algorithmhasthe followingform

LDS Method of Degree one , Full Approximation Scheme

Initialize V_I

N = 0

While N < [_] Do

Initi lize(V0 ,Vl )
For i =1 ..... Revisit Do

Solve =
Set N = N + 1

End

End

Here, V1 denotes the vector (V0,1, V1,1). For presentation simplicity, the initialization procedure

is described for the case H = 2. Generalizations to the case H = 2 _ are identical to those for the

Correction Scheme. In Section 5.1.2 it was shown (see Eq. (5.8)-(5.7)), that after the Correction

Scheme initialization 1/01,1contains the fine grid solution uh(x, At) and Vll,1 contains At r(x, At).

Thus, the FAS initialization consists of the Correction Scheme initialization supplemented with

the additional computation of (u h + r)(x, At) at the end of the procedure. For completeness, the

whole initialization procedure for the Full Approximation Scheme is listed below

Initialize(V0,Ni,viN1)

Set U N rh,k ITN
----all,K "{3,1

Solve U N+_- -- E h'k U N4m'_l ,

v0,N1+1 = EH, K VoN,1

Set V1N+I - If/fU N+I

_/1,N1+1 ---- VO,NI+I Ac

Set N = N + 1

_ _,,N+I
0,1

_N+I
1,1 ,

_N+I1,1 ,

m=1,2

The generalization to higher degree LDS is straightforward, instead of the original variables

(Vo,a, VI,d,.. ., Vd,d) a new set of variables (Vo,d, Vo,d + VI,d,..., Vo,d +'" "+ Vd,d) is introduced. The

equations satisfied by these new variables can be determined from the equivalence between the

Full Approximation Scheme and the Correction Scheme for linear problems.

5.1.4 Treatment of Boundary conditions

The LDS treatment of the boundary conditions will be discussed under a restrictive commutativity

assumption, which at this stage we do not know how to dispose.
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Assumeu h satisfies the boundary condition

Mu h + Nu h = g

If [M, N] = 0, then r = Nu h satisfies,

(5.14)

MT- = M N u h = N M u h = Ng - N2u (5.15)

If MT- <<: r the right hand side term may be neglected and v satisfies the boundary condition

Mr = 0 (5.16)

Otherwise, when higher degree LDS is employed, the rj satisfy the boundary conditions

_/7-1 + 7"2 = gl (5.17)

MTk = 0 (5.18)

where

Tj = NJr (5.19)

gj = NJg (5.20)

Thus, a large error at the boundary discretization may require adding correction terms and

corresponding equations in the whole domain.

The assignment of the appropriate boundary conditions to the correction terms when the

commutativity assumption does not hold should be further investigated.

The presence of non-periodic boundary conditions may pose problems even when the commu-

tativity assumption holds. This is due to errors introduced by the one-sided high order interpola-

tion near the boundaries. These large and localized errors excited during the initialization phase

might not be damped before the next visit to the fine grid; resulting in an error which grows

exponentially in the number of visits to the fine grid. At this stage of research, it seems that

one should use the differential equation to design appropriate near boundary interpolation with

reduced errors (see Sec. 7 for an example).

5.2 Richardson Extrapolation

The simultaneous time stepping on two grids during the initialization phase can be used to

estimate the local truncation error. This estimate can be used in various ways. In [1, 2, 3] it was

used to implement adaptive mesh refinement for hyperbolic equations. In the multigrid method

this estimate is used for the r extrapolation technique which applies a weighted transfer of the

correction term to obtain higher accuracy using a lower order scheme [4] .

For simplicity, let Q_ be a two-level explicit difference operator. If the solution is smooth
enough, the local truncation error is

u(x,t+k)-Qhu(x,t) = k[kqla(x,t)+hq2b(x,t)]+kO(kq,+l +hq_+l) (5.21)

---- 7"+ kO(k q'+l + h q_+l) (5.22)

25



wherethe leadingterm is denotedby r. If u is smooth enough, then if one takes two time steps

with the method Qh, the leading error is 2T. That is,

u(x,t + 2k) - Q_hU(X,t) = 2r + kO(k q1+1 + h q2+l) (5.23)

Let Q2h be the same difference scheme as Qh but based on mesh width of 2h and 2k. Also, assume

that the order of accuracy in time and space are equal, ql = q2 = q- Then

u(x,t+ 2k) - Q2hu(x,t) = (2k)[(2k)qa(x,t)+ (2h)qb(z,t)] + O(h q+2) (5.24)

= 2q+lr + O(h _+2) (5.25)

Since u(x, t + 2k) - Q2u(x, t) ,_ 2r, forming the difference

Q2hu(x, t) - Q2hu(x, t)

2q+l - 2
= T+ O(h q+2) (5.26)

gives an estimate of the local truncation error at time t. In other words, the difference between

the solution on grid (2h, 2k) and (h, k) uses to estimate of the local truncation error.

This procedure has several advantages. First, it is not necessary to know the exact form of

the truncation error to apply it. The error estimation procedure is independent of the difference
method. The restriction of this method, that the accuracy in time and space should be the same,

is not a severe one. Many popular finite difference methods share this property, for example,

second order methods like Lax Wendroff or MacCormack's method and Leap Frog, and first order

method such as upstream differencing. For methods where the accuracy in space and time is not

the same, a more expensive variant of this procedure is possible. For example, one could estimate

the spatial and temporal error separately: first keep k constant and take a step based on 2h

differences, then keep h constant and take a step with time step 2k. Other variations are possible.

In the present work the LDS with Richardson extrapolation was employed only for schemes with

the same spatial and temporal accuracy. The usefulness of this approach applied to discretizations

without this property should be further investigated.

The initialization step of the LDS method computes the term Q2hu - Q2hU and uses it as the

initial value of the correction equation on the next coarser grid. Taking

2q - 1
(5.27)

as the initial value will yield an O(h q+l) approximation on the coarse grid.

The initialization of the extrapolated LDS of degree one is performed directly from the finest

grid. The extra cost associated with this initialization is compensated by the added accuracy.

Richardson extrapolation is based on Taylor expansion of the error and is valid only for smooth

data. For non-smooth solutions, this procedure is incorrect and might lead to an error that grows

exponentially with the number of visits to the fine grid. Therefore, a great care should be taken

when considering this method, to ensure that the discretization is dissipative enough to prohibit

any undesired growth. Nevertheless, since the dissipative schemes employed by the LDS damp the

oscillatory components (see Sec. 6.2), this technique might give excellent results when properly

used (see Figure 12).
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5.3 Work Considerations

The amount of computational work and the memory requirement in a cycle of an LDS of degree m

will be evaluated and compared with the corresponding requisites on the-finest grid in the cycle.

The simultaneous time-stepping on the finer grids during initialization constitutes a large

fraction of the algorithm computational cost and dominates its storage requirements. There is a

trade off between the storage requirements and the efficiency in the two initialization procedures

described in Section 5.1. In the present work the computationally efficient simultaneous initial-

ization was employed since only moderate storage was needed. However, when storage is limited,

direct initialization might be favored. In this section, only the efficiency of the simultaneous

scheme is analyzed, but the storage requirements are compared for both methods.

In order to simplify analysis, it will be assumed that the finest and coarsest grid meshsizes

satisfy H = 21h; and that a grid is refined by halving its meshsize.

The problem is solved in a d-dimensional space, for d = 2, 3. Typically, real world problems

occur in 3-dimensional space.

5.3.1 Storage Requirements

The LDS method of degree m employs on the coarsest level m + 1 times as many equations as

on the finest grid; while on intermediate grids, twice the number of the fine grid equations are

solved. The number of points in a spatial grid on any level is 2d larger than in the next coarser

one. In the simultaneous initialization, see Figure 3, if all grids are allocated simultaneously the

storage requirement is,

( m+l z-1 1 )1 + 2d----T- + Z 2dJ-1 S (5.28)
j=l

where S is the storage required for the finest grid. Noting that at all times merely two grids are

time advanced simultaneously, then a careful management of memory may reduce this requirement
to

1 + _ + 2d----7- S (5.29)

These two requisites are equivalent for l < 2 (i.e., for H = 2, or 4) as is the case in the present

research. Therefore, this possible small reduction of memory usage will not be further elaborated.

If memory is at premium, storage may be traded for efficiency by using direct initialization,

see Figure 2. This procedure employs only the finest and coarsest grids with memory requirement
of

m+l
(1 + --7-)5 (5.30)

It should be noted that typically I = 2, d >_ 2, and due to efficiency considerations the degree

satisfies m < 3 (see Section 5.3.2); thus, the storage overhead associated with the LDS algorithm

is fairly small.

5.3.2 Efficiency

The computational cost of fine grid time-stepping relative to the cost of obtaining the same

solution using the LDS algorithm will be evaluated. In this estimate, the cost of the intergrid

27



transfersis neglected,as in manycasesit is smallrelativea finegrid time step. First, the work
associatedwith the initialization of anLDSof degreem is computed.Define

ilm( d) = { The cost to initial]ze an LDS of degree m using the simultane°us }, initialization when the spatial dimension is d and H = 2_h
(.5.31)

An inspection of Figure 3 leads to the following formula for If,re(d),

m(m+l) 3m_ 1 (5.32)
It,re(d) = 2 m + 2d/+ 1 + 2d k

k=l

During initialization a time equal to m 21 fine grid time steps is marched. Denote by N the
number of coarse grid time steps performed before revisiting the fine grid. The efficiency of an

LDS cycle is defined as the computational cost of time-stepping on the fine grid relative to the

work required to obtain the same solution on the coarse grid with an LDS cycle. It is given by

the formula,

(N + rn)21 (5.33)
II,m(d) + N (m + 1) 2 -dz

The following table and figure list the LDS efficiency for H = 4h and d = 2, 3, for various values

of N.

Revisit

5

10

15

20

25

Efficiency for 2D problems

m=llm=2

6.98 4.23

10.83 6.35

13.15 8.00

15.81 9.32

17.52 10.41

m=3

3.24 9.42

4.67 16.28

5.82 22.38

6.75 27.85

7.53 32.80

Efficiency for 3D problems

m=l Im=2 [ m=3

5.56 4.25

9.11 6.63

12.36 8.83

15.35 10.86

18.09 12.75

Typically to multilevel methods, this algorithm efficiency increases with the problem dimen-

sionality.

6 Fourier Analysis

Fourier analysis is a major tool for the analysis of numerical approximations to hyperbolic equa-

tions [17], as well as for analyzing multigrid algorithms [4]. In this section it is employed to obtain

necessary conditions for algorithm convergence.

6.1 Properties of the intergrid transfers

The transfer of the solution between the various grids plays a central role in the LDS algorithm.

In the initialization stage the solution is first interpolated to the finer grids and after several time

steps on these grids is restricted back to the coarsest grid. For an LDS of higher degree, this pro-

cedure is repeated for the correction terms. Inevitably, this process introduces errors. Therefore,

an appropriate choice of these operators is essential to guarantee the algorithm performances and

the desired accuracy of the solution.
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Figure 4: LDS efficiency for 2D and 3D problems when H = 4h. (a) LDS of degree one (b) LDS
of degree two (c) LDS of degree three.

The analysis will be first performed for first order operators. This is no limitation since every

problem may transformed to a first order system by introducing additional variables. Assume
that A = At

is fixedon allgrids;thus,the temporal errorcan be expressed in terms of h =

&x. For simplicity,the analysiswillbe performed forone dimensionalproblems with H = 2h;

generalizationsto higherdimensions isstraightforward.Assume thatthe spatialdiscretizationis

of order p. Furthermore, assume that the order of the spatialdiscretizationcoincideswith the

order of the fulldiscretization.Thus, for thisanalysis,the effectof the temporal erroron the

accuracy may be ignoredby investigatinga semi-discretesystem.

Let the Ih, I H be the interpolation and restriction operators, respectively; and let i_I(O),]H(o)

be their corresponding symbols. Assume that for smooth components the intergrid operators
satisfy,

I_(0) = 1+ cO p' +0(0 p'+I) (6.1)

= l +cOp:+o(op2+l)

where throughout this section c is a generic constant. For the harmonic oscillatory component
0' = 0 + _- holds,

/_1(0") = CO ql + 0(0 ql+l) (6.2)

/#(o') = coq:+ o(oq2+1)

Denote by/_(0) =/_H(0)/h(0). Then under the previous assumptions, for smooth components

i(0) _ (1 + c0P_)(1 + cOp2) = 1 + c(O p_ + 0p2) + h.o.t (6.3)
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Forthe harmonicoscillatorycomponentsholds,

i( O/) = C Oql'_-q2 .31_ h.o.t (6.4)

Let Lh(0) denote the symbol of L h. For LDS of first degree one wants to compute,

_'(0, At) : [eLh(°)At - eL_(2°)At] _o(8) (6.5)

Instead one computes,

[i(O)e Lh(°)At + i(O')e Lh(°')'xt _ eL'(2°)At] fLo(O) = At) + [c(0pl +  p2)eLh(o) ,

+ cOqa+q2e Lh(O')At] rio(0) + h.o.t (6.6)

For the low frequencies, if L is the first derivative,

],h(o) = i 0 + ch p + h.o.t (6.7)

For the high frequencies,

.(0)
Thus, for this operator,

+lAt ^
_(0, At) = c 0p --_-uo(O) + h.o.t

In order to obtain the desired accuracy, the following inequalities should hold

(6.s)

(6.9)

19pl < Op+l At (6.10)
h

0p2 < #p+z_t (6.11)
h

#ql+q2 < 0p+zAt (6.12)
h

In general, for first order hyperbolic equations, ___t= 0(1), thus this term may be neglected and

one obtains conditions on the order of the intergrid transfers required to guarantee the algorithm

performances

p+ 2 <_ Pa,P2 (6.13)

p + 2 _< qz + q2

It follows from the above bounds that if -_ _ 0, increasingly higher order interpolations

will be necessary. Hence, decreasing the time step on a fixed spatial grid will have undesired

consequences. In practice, one tries to use a time step as large as possible, thus, this observation

poses no real restrictions.
If L is an operator of order m, the previous argument implies that,

#(0, At) = cO v+m At._--_u0(#) + h.o.t (6.14)
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Therefore,in orderto obtainthe desiredaccuracy,the followinginequalityshouldhold

p-4-rn A $
0p_ < 0 w (6.15)

h TM

and similar inequalities should hold for p2, (ql + q2). This implies the following conditions,

p+m+l < pl,P2 (6.16)

p+m+l < ql+q_

provided _ = 0(1), i.e., it is bounded away from zero.

For an LDS of degree two, _ is initialized to correct T in the same way that r is initialized to

correct uLv s. Hence, these conditions are sufficient for LDS of degree two, as well. It follows that

these conditions are sufficient for an LDS of a general degree m.

These orders of the intergrid transfer are necessary to maintain the scheme accuracy. In prac-

tice, one might prefer to employ transfers of order higher than the minimum necessary. Consider,

for example, a dissipative scheme which strongly damps the oscillatory components. Thus, each

visit to the fine grid somewhat damps the smoother components of the solution through the inter-

polation error which transfers some of their energy to the fine grid oscillatory components. High

order interpolations transfer less energy to these components and therefore might be preferable
in such circumstances.

Another undesired property of the intergrid transfer is captured in the following lemma.

Lemma 2: For an LDS algorithm, /f](0)+](0') = e, with e # 1, then initialization procedure

introduces an O(1) error in the Fourier component 0.

Proof : By the assumption, instead of ÷(0, At) in Eq (6.9) one computes

+ (e - 1 - c0 pl - cOP2)e Lh(e')ht] ri0(e) + h.o.t (6.17)

The staggered grid transfers, often, satisfy the condition of Lemma 2 for the oscillatory com-

ponents. However, since the LDS discretizations are, usually, dissipative (see Sec. 6.2), this result

has little practical consequences.

6.2 The Symbol of the LDS cycle

The LDS method employs several operators which should be simultaneously analyzed in order to

ensure the proper performance of the algorithm. In the sequel, Fourier analysis will be used to

analyze the cycle of an LDS of degree one for constant coefficient equations in one dimensional

space with periodic boundary conditions when H = 2 h.

Let Eh, EH, be the time marching operators on the fine and coarse grids, respectively. Denote

the intergrid transfers by I H, I_. The correction term r is initialized by,

T 1
/ H 2 h

The solution of the LDS of degree one algorithm, for n > 1, is given by,

U_LDS = EHu,,_0 + (n- 1)E_-lr 1 (6.19)

= (E. +(n- 1)(I E I - z.)) (6.2o)
X ]
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Let J_h,EH,_H _h denote the symbols of the respective operators. Let G(O, u) denote the am-

plification factor of the Fourier component _ in a cycle consisting of u consecutive steps on the

coarse grid before revisiting the fine grid. It is given by

c(e,.)=it }  (2e)tl

The amplification factor of any Fourier component should approximate as closely as possible the

analytic growth rate of that component. In particular, when the analytic solution does not grow

in time, one would like to guarantee that no Fourier component is amplified by the LDS cycle,

i.e., that the amplification factor of the cycle A(u) satisfies,

A(u) = max G(O,u) _< 1 (6.21)
0el-.,.]

Moreover, it would be desirable if the LDS cycle was time-stable for any underlying discretization

with this property.
For scalar equations, it can be easily seen that, if ]]_H(2_0)] = 1, and

^H t ^2 l
_1(200) = [iH(o0)/9_,(00) i}(Oo) + Ih (O0)Eh(O0) i_(O_))-/_H(200)] _0(200) # 0

then

lim G(8o, v) = oc (6.22)
/1--_OO

This is in accordance with the polynomial error bounds derived in Section 3. It should be noted

that although the bounds were polynomial, whenever condition (6.21) does not hold, the algorithm

exhibits a growth exponential in the number of visits to the fine grid. Thus, the time-stability

of the underlying discretization does not necessarily imply time-stability of the LDS scheme.

Moreover, if this condition is violated for all u < u0, (e.g., when the discretization is not dissipative

enough), then for revisiting index u < v0 the more frequently the fine grid is visited the faster the

solution blows up.

Dissipation induces an exponential decay of the solution. Therefore, a dissipative scheme will

eventually suppress any polynomial growth of the solution, i.e., for such discretizations A(u) < 1

for large enough u. However, since the LDS algorithm should maintain the fine grid accuracy,

that grid has to be visited sufficiently often. Therefore, the discretization should have enough

dissipation to guarantee that condition (6.21) holds for a schedule v prescribed by the accuracy

requirement. Quite often, artificial dissipation should be added to the coarse grid discretization to

ensure the cycle is time-stable. This dissipation may be added either during the time marching on

the coarse grid, or during the initialization stage as well, in which case it should also be introduced

to the fine grid scheme.

The additional dissipation typically results in a dissipative cycle. This might limit the method

applicability for truly long integration times. Hence, one should add just enough dissipation to

ensure that no Fourier component is amplified by the cycle. This, of course, does not imply that no

wavenumber may grow during the cycle; to the contrary, imposing such a restrictive requirement

leads to a dissipative cycle of limited practical interest.

In general, the length of the cycle u and the amount of artificial dissipation should be deter-

mined simultaneously to achieve the fine grid accuracy.
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6.3 Staggered vs Non-staggered grids

Time dependentproblemsareoftendiscretizedand solvedon staggeredgrids. The dispersion
error of discretizations on such grids is, typically, significantly smaller thkn the error in schemes

of the same order on a non-staggered grid. Hence, one can accurately solve on staggered grids

for substantially longer integration times. In the sequel the benefits and disadvantages of using

such grids when employing the LDS method will be briefly discussed. The exposition is rather

genera[ and is demonstrated through a particular example of the linearized Euler equation, which

has been investigated in the present research.

A non-staggered Cartesian grid consists of a set of discrete variables defined at its vertices and

the system of equations is discretized at these points. In contrast, on a staggered grid the various

variables are located at different positions in the computational cell and the various equations

are evaluated at distinct points of the cell. Figure 5 depicts the variables distribution and the

corresponding computational cells for the linearized Euler equation,

ut = a. Vu + cpx

vt = a. Vv + cpy

Pt = a'Vp+c(u_+vv)

(6.23)

where a = (al, a2) is a two dimensional vector. The superiority of staggered grid discretizations

[] cell for V

[] cell for U

[] cell for P

Figure 5: Staggered grid discretization of the linearized Euler equation

to those on non-staggered grid stems from the fact that the symbol of a general order mid-

cell discretization of the first derivative has the form _=0 2iaksin(h+_)e (where ak depends

on the scheme coefficients), while the symbol of a central discretization of this derivative on

a regular grid is _=1 i_k_ (_k are scheme dependent). The later symbol vanishes at _r;

hence, poorly approximates the continuous symbol iTr. The phase error of a non-staggered central

discretization is larger than that of a mid-cell discretization of the same order over a major

fraction of the spectrum of wavelength representable on the grid. Moreover, in non-dissipative

full discretizations based on central spatial discretizations the Fourier components in the upper

half of the spectrum have negative group velocity and move in a direction opposite to the physical

waves. These components can be spuriously excited by discrete boundary conditions or mesh

refinements [15, 17]. Therefore, they might deteriorate the computation accuracy even when
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Figure 6: Refinement of a staggered grid discretization of the linearized Euler equation with zero

Dirichlet boundary condition in the y direction.

they do not occur in the physical problem. In contrast, in mid-ceU discretizations all Fourier

components have positive group velocity. A considerable drawback of the staggered grid stems

from the variables placement at different positions in the computational cell which does not allow

implementation of characteristic boundary conditions.

The small phase error of staggered grid discretizations and consequently the significantly less

artificial dissipation required to suppress the polynomial growth of the LDS error give rise to

highly efficient algorithms applicable for very long integration time. The efficiency obt_ned by

the LDS algorithm for the linear acoustics equation solved on staggered grid was 25 in 2D and 66

in 3D, (see Figures 15 and 16).

The staggered grid has two drawbacks associated with the LDS implementation. Both of them

occur in the model problem investigated here and are associated with the intergrid transfers. The

first, is that the intergrid transfers satisfy the condition of Lemma 2. Therefore, for some high

frequencies there is a 0(1) error and enough dissipation should exist to eliminate this error. The

second problem is that the solution interpolation to the fine grid requires extrapolation in the

cells nearest to the boundary (see Figure 6). This extrapolation strongly amplifies the oscillatory

components in the solution and a way had to be found to circumvent this effect for our model

problem. Despite these deficiencies, for the problems investigated in this work the staggered grid

supports substantially better results than the regular grid.

7 Numerical Results

The LDS method was introduced in the previous sections and its properties were analyzed. The

numerical examples presented in this section aim at demonstrating the method strength, as well
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assupportingtheclaimsand analysisperformedin previoussections.
All the examplesin this workhavespatialdimensiontwo. However,generalizationto higher

dimensionalproblemsis straightforwardandwasavoideddueto theheavycomputationalcostof
suchsimulations.

In all examples_- = 4 with H = _ and h = ]-Fg,1.in Example 6 finer grids were used as well.

The notation LDS(d = a, 7 = b) used in this section denotes an LDS algorithm of degree a

which revisits the fine grid after performing b time steps on the coarse grid with the LDS system.

In all relevant plots, the error is normalized with respect to the solution norm, e.g_ the coarse

grid error is normalized by [[I_u-uZ]l where IHu denotes a restriction of the exact solution toIlrhvrr '
the coarse grid. Similarly, the relative error which measures the error in an approximation to the

fine grid solution is normalized by the latter solution norm; e.g., the coarse grid relative error is

normalized by _ where u hffu_[[ ' stands for a restriction of the fine grid solution to the coarse

grid.

7.1 The Advection Equation

The first set of examples consists of solving the advection equation on the domain [0, 1] × [0, 1]

with periodic boundary conditions. The equation is given by,

_ - a(x, y) _ - b(x,y) u_ = 0 (7.1)

In case a(x, y), b(x, y) are constant, an explicit solution of this equation with initial data

_(x, y,o)= uo(x, y) (7.2)

is given by

u(_, y,_) = u0(x + at, v + b_)

Two instances of this equation are solved, the constant coefficient equation with,

(7.3)

a(z, v) = 1

b(x,y) = 0.3

and the variable coefficient equation with,

a(x,y) = 1 + 0.3 sin2_rx (7.6)

b(x,y) = 0.3 (1+ 0.4 sin 2Try) (7.7)

In this set of examples, except Example 6, the spatial discretization was second order upwind and
k K=0.3"integration was performed by third order Runge-Kutta. In all these examples _ =

In this set of examples the solution was restricted to the coarse grids by injection, and unless

otherwise specified, quintic interpolation was employed.

Example 1. The LDS yields the fine grid solution. Throughout this work, it was claimed

that the LDS method yields the fine grid solution on the coarse grid. Clearly, these solutions may

not be identical; rather, one would like to ensure that the error norm in the LDS solution relative
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to the finegrid solutionis similarto theerrornormin thefinegrid solutionrelativeto theexact

solution,that is, [[IhU _ uh[]h - u  sll (7.s)
[[IHuh N I]IhV[[

where IhU denotes a restriction of the analytic solution to the fine grid. Figure 7 demonstrates

that the LDS yields the fine grid solution in the sense defined by (7.8).

Example 2. The LDS effective integration time. Figure 8 shows two examples of the LDS

applied to the variable coefficient advection equation, for smooth and oscillatory data. It can be

readily seen that the effective integration time the discretization can be used (i.e., the integration

time when the error is small) drastically decreases for oscillatory data. This figure should be born

in mind as a reference, since in some of the next examples the same equation with these initial

data are used for integration times significantly longer than the LDS effectiveness time, in order

to emphasize difference between solutions for various parameters.

Example 3. Direct and simultaneous initialization are practically indistinguishable.
In Section 5.1.1 two initialization procedures for the correction terms were presented. These

methods vary in their computational cost and memory requirements. Figure 9 compares the
direct and simultaneous initialization procedures. It can be seen that at a time longer than

the algorithm effectiveness time, the LDS solutions are hardly distinguishable and the observable

difference between these solutions is significantly smaller than the error in the LDS approximation

relative to the fine grid solution. Thus, it may be concluded that these procedures have essentially

the same accuracy.

Example 4. The necessary and desirable orders of the intergrid transfers. In Sec-

tion 6.1 the orders of the intergrid transfers required to ensure the algorithm performances were

analyzed. This analysis implies that for a second order scheme the interpolation should be at

least cubic for an LDS of general degree d. The injection introduces no error to the high fre-

quencies, thus is of infinite order. Figure 10 displays an LDS of degree one and two (on the left

and right, respectively) with linear, cubic and quintic interpolations. It can be seen, for both

approximations, that linear interpolation results in an approximation worse than the coarse grid

solution. Cubic interpolation is sufficient to guarantee the LDS performances, however, quintic

interpolation yields significantly better results. This phenomena might be due to the interpolation

that transfers some of the smooth components energy to the fine grid high frequencies which are

strongly damped on the fine grid. This interpolation error is larger for the cubic interpolation.

Example 5. The efficiency of the LDS of various degrees. An LDS approximation of

higher degree provides a better approximation to the fine grid solution than a low degree one.

Hence, it may be used for longer integration time before the fine grid should be revisited. On the

other hand, for such a scheme the initialization procedure as well as the coarse grid time-stepping

are more costly.

Figure 11 addresses the question which approximation is more cost effective, a low or a high de-

gree one. In this figure LDS algorithms of various degrees with the same efficiencies are compared
for both smooth and nonsmooth data and for diverse costs. The efficiency of LDS(d = 1,'y = 8),
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LDS(d = 2,7 = 20) and LDS(d = 3,7 = 41) is 9.4; while that of LDS(d = 1,7 = 20) and

LDS(d = 2,3, = 79) is 15.8. In order for an LDS of degree three to achieve efficiency of 15 the

fine grid should be visited once in 470 coarse grid steps, while an efficimacy of 15.8 can not be

achieved even if the fine grid is visited once in 1000 time steps. This suggests that high efficiency

can not be achieved with high degree LDS. The efficiency of LDS(d = 3,7 = 350) is only 14.6.

For short integration times this efficiency can not be achieved with LDS of degree three since not

enough time steps are marched during the simulation, e.g., see Figure 11 left.

Figure 11 plots the error in various solutions relative to the fine grid solution. Inspection of

Figure 11 reveals that for small relative error, e.g. ,,_ 0.02 (i.e., T < 1 for the smooth data example

and T < 0.3 for the oscillatory data), then for smooth data the LDS of degree one provides a better

approximation for both the low and high efficiency scheduhng used. For more oscillatory data,

the degree two LDS yields better results for the same efficiency. This might be explained by the

fact that LDS of degree one provides a fairly good approximation for the smoother components,

but not for the more oscillatory ones. The LDS of degree three does not seem an appropriate

alternative to the lower degree approximations.

It should be noted that in 3D problems, the performance of LDS of degree two significantly

improves. Thus, the efficiency of the abovementioned scheduling is : for LDS(d = 1, 7 = 8) it

is 13.63, for LDS(d = 2,7 = 20) it is 15.34 and for LDS(d = 3,7 = 41) it is 18. Moreover, for

LDS(d = 1,3' = 20) it is 27.9, and for LDS(d = 2,7 = 79) it is 38.11. Thus, although in 2D

problems there seems to be little advantage to use second degree LDS rather than first; in 3D,

this changes drastically. If these schedules yield similar results for a similar equation in 3D, then

the LDS of degree two is more cost effective for these problems than the first degree algorithm.

It should be born in mind, that the performances of LDS of various degrees might change de-

pending on the equations or on the data. Therefore, it is hard to give conclusive recommendations

which method to prefer; and each problem should be investigated separately.

Example 6. Richardson Extrapolation. In Section 5.2 the LDS method with Richardson

extrapolation was introduced. Although this technique is limited in scope and, hence, should

be used with great care; it might be highly beneficial when it is applicable. Figure 12, provides

an example when this idea works. It consists of solutions of the constant coefficient advection

equation discretized with first order upwind forward Euler method, which is first order in time

and space. The equation is solved on fine grids of 128 and 256 points and corresponding coarse

grids of 32 and 64 points on which the LDS is solved. In this example the normahzed errors are

computed with respect to the exact solution. For smooth data, mesh refinement of the finest grid

by a factor of two yields a decrease in error by a factor of 1.875 for the first order scheme versus a

factor of 5.81 for the LDS with Richardson extrapolation. For nonsmooth data the fine grid error

is reduced by a factor of 1.71 while for the extrapolated LDS the factor is 4.03. Thus, the error

reduction for the extrapolated LDS is second order both for smooth and oscillatory data.

7.2 The Linearized Euler Equation

The next set of examples involves solution of the linearized Euler equation, given by

pt = a(x, Y)pz + b(x, y)py + c(x, y) (u_ + vy)

ut = a(x,y)uz+b(x,y)uu+c(x,y)px (7.9)
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vt = a(x, y) + b(x,y) % + c(x, y)

This system was solved for various settings. In all of them interpolation and restriction were of

sixth order.

Example 7. Staggered vs. non-staggered grid. Figure 13 demonstrates the superiority of

the staggered grid discretization over the regular one for the single grid solution and consequently

for the LDS approximation. It shows solutions of the variable coefficient linearized Euler equation

on [0, 1] x [0, 1] domain with periodic boundary conditions. The discretization is second order

upwind for the advection terms and second order central for the terms involving c(x,y); the

integration was performed with third order Runge-Kutta with at = 0.3. In the fine non-staggered

grid solution one can see an oscillatory component which dominates the solution. This component

is visible due to a large phase error of the nonsmooth wavelengths on this grid. The error in

these components is even more visible in the coarse grid and LDS solutions. Clearly, the LDS

is ineffective for this integration time. However, since the error in the non-staggered fine grid

solution is already very large, this is not a real drawback. The large dispersive error is also

the cause for the little resemblance between the staggered and non-staggered solutions for the

same data and integration time. In contrast, all the staggered grid solutions do not have those

oscillations, and the LDS provides an excellent approximation to the fine grid solution.

Example 8. The effect of diminishing CFL. In Section 6.1, it was pointed out that when

h--! --" 0, the order of interpolation should increase. Figure 14 demonstrates this phenomenon
AX "

for the constant coefficient linearized Euler equation on [0, 1] x [0, 1] with periodic boundary

conditions. Discretization on a staggered grid is second order upwind for the advection term and

second order central for the terms involving the c factor. Integration was done by low storage

third order Runge-Kutta. It can be seen that for very short integration time an oscillatory error

prevails when t,t_7 = 0.01. Increasing by a factor of 10 the CFL as well as the integration time,
eliminates these oscillations, yielding an excellent approximation to the fine grid solution.

Example 9. High efficiency LDS on periodic staggered grid. The example in Figure 15,

is a solution of the constant coefficients acoustics equation,

Pt -- ux T vu

ut = p_ (7.10)

vt = py

on the domain [0, 1] x [0, 1] with periodic boundary conditions discretized on a staggered grid with
the same discretization as in the previous example, with at_-_ = 0.3.

This discretization has only little dissipation through the Runge-Kutta scheme. However,

since the mid-cell discretization provides an very good approximation to the differential operator,

the coarse grid operator well approximates the fine grid operator. Hence, only a little artificial

dissipation should be added. Sixth order artificial dissipation was added to all equations of the

form EhA 3, with e = 0.005. The small dispersive error of the mid-cell discretization enabled both

very long integration time, as well as very high LDS efficiency of 26 in 2D and 66 in 3D. Note

that at this stage the LDS error relative to the fine grid is forty times smaller than the relative

error of the coarse grid.
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Example 10. High efficiency LDS on non-periodic staggered grid. Figure 16 plots the

solution of the acoustics equation on [0, 1] × [0, 1] with periodic boundary conditions in the x

direction for all variables and zero Dirichlet boundary conditions in the y direction for v,

r(x, 0, t) = V(x, 1,t) = o (7.11)

except for this difference, all the other parameters are identical to those in the previous example.

Recall that high order one sided interpolation near the boundary strongly amplifies the oscil-

latory components. This problem had to be circumvented in this equation for the interpolation in

the y direction. The observation that led to a resolution of this difficulty is that for this equation

and these boundary conditions p, u are symmetric in the y direction, and v is asymmetric in this

direction. These properties were exploited in the design of the intergrid transfers as well as in the

introduction of the high order artificial dissipation. The p, u variables were symmetricly extended

around the boundary in the y direction and the interpolation and dissipation were calculated for

the extended solution. An assymetric extension for the v variable was similarly defined and used.

The assymetry v is follows from the dual initial data argument, which asserts that the boundary

condition (7.11) may be viewed as requiring that a dual solution with the same magnitude but

opposite sign will constantly hit the boundary from the exterior of the domain (e.g., see [16]).

The symmetry of p in the y direction follows from

Thus, if initially

0, = 0, t) = 0 (7.12)

p_(x, O, 0) = 0 (7.13)

this symmetry is maintained for later time. A similar argument holds for the boundary condition

at y = 1. For the u variable,

uyt(x,O,t) = uty(x,O,t) = p_y(x,O,t)= pyx(x,O,t)= vtz(x,O,t) = 0 (7.14)

Again, if the initial solution was symmetric in this direction, symmetry is preserved. These

assumptions hold for the initial data taken in our examples.

It can be seen that the efficiency and accuracy of the LDS algorithm were not affected by the

imposition of non-periodic boundary conditions.

Example 11. The effect of low order artificial dissipation. The parameters taken in

the example in Figure 17 are identical to those in Figure 15 except for the use of lower (fourth)

order of dissipation of the form ehA 2, with e = 0.02. This choice of e yields the same damping

of the oscillatory components as the sixth order dissipation used in Example 9. The resulting

LDS solution does not provide a satisfactory approximation to the fine grid solution even for

integration time significantly shorter than the one used in Example 9 and more frequent visits

to the fine grid. It can be concluded that higher order dissipation is indeed essential for the

algorithm performances, as lower order dissipation damps too strongly the smooth components.

7.3 The nonlinear Euler equation

Example 12. The LDS method for the nonlinear Euler equation In Figure 18, the

nonlinear Euler equation is solved on [0, 1] × [0, 1] domain with periodic boundary conditions.
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This systemis givenby,

pt + p(ux+vy)+upx+vpy=0

c 2

ut + (uu_:+v%)+--pp:: =0

c 2

vt + (u v_: + v vy ) + -j_ = O

(7.1s)

where p = p'Y, c2 = 7p "Y-1 and 7 = 1.4. Second order central discretization was used for all terms,

with third order low storage Runge-Kutta ( _'_ = 0.3). Artificial sixth order dissipation was added

with e = 0.8. The interpolation and restriction were of sixth order accuracy.

The LDS efficiency in this example is 17.5 for 2D problems and 32.8 for 3D problems.

8 Conclusions

The Large Discretization Step methods for time dependent problems were presented. First, the

LDS approximation was defined. It consists of a system of lower accuracy discretizations ap-

proximating a more accurate time dependent discrete operator. Error bounds on this type of

approximations to linear problems were obtained for the semi-discrete and fully discrete cases.

These estimates hold for both hyperbolic and parabolic equations. The research reported herein

aimed at deriving efficient algorithmic implementation of the LDS approximation for hyperbolic

equations, a type of equations which were not previously amenable to multigrid methods. A

heuristic argument motivated the design of the LDS algorithm for nonlinear problems, as well.

The LDS methods enables to obtain the fine grid accuracy on a coarse grid by adding correction

terms to the coarse grid equations, initializing them using the fine grid and solving a system of

equations for these terms. The accuracy of the correction terms deteriorates at a rate determined

by the coarse grid discretization. However, since their norm is significantly smaller than the

solution norm, they may be effectively used for many coarse grid time steps. Thereafter, the fine

grid should be revisited to compute new initial data for them. Fourier analysis was employed to

analyzed different aspects of the algorithm; in particular, to obtain conditions on the necessary

orders of the intergrid transfers.

The resulting algorithm has a typical efficiency of 16 for 2D problems and 28 for 3D equations.

This efficiency was achieved for linear problems with periodic and Dirichlet boundary conditions

and the for the nonlinear Euler equation with periodic boundary conditions. A particularly good

discretization of a linear equation yielded efficiency of 25 in 2D and 66 in 3D problem.

The results presented in this work are very promising as for the potential of the proposed

approach to tackle even more complex problems. Still, a lot of research should be carried out
to better understand the method abilities and limitations. Several aspects of the LDS algorithm

should be further investigated. The frequency the fine grid is visited is important both to the

algorithm efficiency and to ensure the accuracy of the resulting solution. It would be highly ben-

eficial if there was a systematic, preferably adaptive, way to determine when the fine grid should

be visited. The dissipativity of the LDS cycle is essential to damp the polynomially growing error.

For dissipative discretizations, this requirement typically does not pose any problems. Quite of-

ten, though, some artificial dissipation should be added to guarantee the algorithm performances.
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A general way is required to determine the right amount of artificial dissipation which will sup-

press the error growth without affecting the algorithm accuracy. Boundary conditions treatment

within tile LDS does not seem to pose particular problems. Nevertheless,-a large variety of such
conditions should be implemented and tested. In particular, a general approach should be found
to reduce the high interpolation error near the bo_nldaries.

The novel character of these methods opens many research directions. The application of tile

LDS to systems of conservations laws and shocks calculations should be investigated. Another

interesting direction is to investigate possible generalizations of this method. In tile present
research, one solves for the correction terms of a linear problem tile same equation as the solution.

This approximation does not always yield the desired results, e.g., consider the discretization of

the wave equation discussed in Section 3. In a more general setting, there might be several

correction terms each satisfying a different equation. Such a generalizalion might significantly
reduce the simplicity of the present approach; however, it could be al)plicable to a broader class
of equations.

It is expected that tile incorporation of the LI)S ideas into parabolic solvers wouhl significantly
improve their performances, as well. This is another promising research direction.
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p0 = 1 + 0.05e -s°(=2+y2), uo = 0.2, v0 = 0. (a) the fine grid solution (b) the LDS(d = 1,3' = 25)

solution when adding sixth order dissipation (c) the coarse grid solution.
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